RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SIXTH SEMESTER EXAMINATION, MAY 2018

THIRD YEAR [BATCH 2015-18] PHYSICS (Honours)

Date : 10/05/2018 Time : 11 am – 1 pm

Time	e : 1	Paper : VIII Full Marks :	50
Answer <u>any five</u> questions of the following : [5×10]			
1.	a)	What do you understand by crystal lattice and the unit cell?	[2]
	b)	Determine the volume of the fcc unit cell in terms of the volume of its primitive unit cell.	[3]
	c)	Show that a crystalline solid can not possess a five-fold rotational symmetry.	[3]
	d)	Sodium has bcc structure and atomic weight is 23. Calculate the atomic radius of the sodium. The density of sodium is 963 kg/m ³ .	[2]
2.	a)	What do you mean by reciprocal lattice. Explain. Show that reciprocal lattice corresponding to a bcc lattice is an fcc lattice in the reciprocal space. [2]	2+2]
	b)	Write down Bragg's law in reciprocal lattice space.	[2]
	c)	In the bcc crystal the Bragg's diffraction condition is satisfied but x-ray diffraction line is not observed. Explain.	[2]
	d)	Calculate the lattice energy and cohesive energy of NaCl crystal. Given : I.P.= 5.14 eV , E.A. = 3.61 eV , $r_e = 0.28 \text{ nm}$, $\epsilon_0 = 8.85 \times 10^{-12} \text{ F.m}^{-1}$, $m = 9$, $\alpha = 1.748$, symbols have their usual meanings.	[2]
3.	a)	Using the Debye approximation, show that the lattice heat capacity of a solid at $T \ll \Theta_D$ is	
		proportional T ³ . Given $g(\omega) = \frac{9N}{\omega_D^3} \omega^2$, symbols have their usual significance.	[4]
	b)	A circularly shaped chain of 16 atoms with interatomic spacing 3Å. Calculate the values of discrete wave vectors.	[2]
	c)	Show that the structure factor for reflection (khl) can be written as $F(hkl) = \sum_{j}^{N} f_{j} e^{i2\pi(hu_{j}+kv_{j}+lw_{j})}$,	
		where symbols have their usual meanings.	[4]
4.	a)	What is Hall effect? Find the expression for Hall coefficient. [1	+31
	b)	The internal energy of the free electron gas at temperature T is given by	- 1
		$U = \frac{3}{5} N E_{F0} \left[1 + \frac{5\pi^2}{12} \left(\frac{T}{T_F} \right)^2 \right], \text{ where N is number of electrons per unit volume, } E_{F0} \text{ is Fermi}$	
		energy at 0K and T _F is Fermi temperature. Using this relation calculate the molar specific heat of electron in a metal of $E_{F0} = 5.5$ eV at 300K.	[3]
	c)	Find the temperature at which the lattice specific heat and electronic specific heat of copper are equal. Given, $E_{F0} = 5 \cdot 5 \text{eV}$ and Debye temperature is 350 K.	[3]
-			

a) Write down the classical relationship between force and kinetic energy of a free particle. Hence obtain the expression of isotropic effective mass of the electron in an energy band. In which way is it different from Free electron mass? [1+3+1]

- b) Consider the following dispersion relation for a cubic structure $E = E_0 \alpha 2\gamma(\cos K_x a + \cos K_y a + \cos K_z a)$ where; α, γ, E_0 are constants and *a* is lattice constant.
 - i) Find out the points for which the energy is maximum and minimum. Hence find energy band width. [2+1]
 - ii) Obtain the expression of effective mass for small values of K in terms of other parameters. [2]
- 6. a) Derive an expression for the built-in-electric field in a pn junction by solving one-dimensional Poisson's equation. [4]
 - b) A pn junction is formed by n-type and p-type semiconductor of doping concentration N_d and N_a respectively. Find the expression for barrier potential of the pn junction at temperature T. [4]
 - c) Consider a silicon pn junction of $V_{bi} = 0.63$ V at T = 300K with doping concentrations of $N_a = 10^{16} \text{ cm}^{-3}$ and $N_d = 10^{15} \text{ cm}^{-3}$. If the corss sectional area is 10^{-4} cm^2 . Calculate the junction capacitance of the pn junction when a reverse bias of 5V is applied. [Assume : $\epsilon_r = 11$ and $\epsilon_0 = 8.85 \times 10^{-14} \text{ F.cm}^{-1}$] [2]
- 7. a) Using Langevin theory show that paramagnetic susceptibility of a material is inversely proportional to the temperature. [5]
 - b) The paramagnetism in copper sulphate arises mainly from copper ions with $S = \frac{1}{2}$, L = 0. Show

that the magnetization (M) is given by the expression $M = N\mu_B \tanh\left(\frac{\mu_B B}{kT}\right)$, where N is the number of ions per unit volume, B is applied field, $\mu_B = Bohr$ magneton, k is the Boltzmann constant and T is temperature.

[3]

- c) Find the total polarisability of CO₂, if its susceptibility is 0.985×10^{-3} . Density of CO₂ is 1.977 kg/m³. [2]
- 8. a) Compute the Local Lorentz field due to the polarization charges on the surface of a spherical cavity. Using this relation, derive the Clausius-Mosetti relation. [2+3]
 - b) Briefly explain Meissner effect with a suitable diagram. Show that the magnetic field decays inside the superconductor exponentially with a characteristic length scale. [2+1]
 - c) The electronic configuration of Pm³⁺ ion is 4f⁴6s⁰. Calculate the magnetic susceptibility for a salt containing one 1kg mole of Pm³⁺ ion at 300K. [2]

_____ X _____